哈爾濱海月數據恢復,技術亞洲領先 設為首頁加入收藏RSS訂閱
中國區:哈爾濱(總部)鄭州福建深圳沈陽合肥大連包頭淄博上海廣州
    南京杭州嘉興武漢濟南青島新疆太原
亞太區:印度韓國泰國新加坡馬來西亞澳大利亞
Linux
Why doesnt Linux need defragmenting?

  It's a question that crops up with depressing regularity: Why don't Linux filesystems need to be defragmented?. Here's my attempt at giving a simple, non-technical answer as to why some filesystems suffer more from fragmenting than others.

  Rather than simply stumble through lots of dry technical explanations, I'm opting to consider that an ASCII picture is worth a thousand words. Here, therefore, is the picture I shall be using to explain the whole thing:

  a b c d e f g h i j k l m n o p q r s t u v w x y z

  a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  g 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  This is a representation of a (very small) hard drive, as yet completely empty - Hence all the zeros. The a-z's at the top and the left side of the grid are used to locate each individual byte of data: The top left is aa, top right is za, and bottom left is az. You get the idea, I'm sure. . .

  We shall begin with a simple filesystem of a sort that most users are familiar with: One that will need defragmenting occasionally. Since both Windows and Linux users make use of FAT filesystems, if only for USB flash drives, this is an important filesystem - unfortunately, it suffers badly from fragmentation.

  We add a file to our filesystem, and our hard drive now looks like this:

  a b c d e f g h i j k l m n o p q r s t u v w x y z

  a T O C h e l l o . t x t a e l e 0 0 0 0 0 0 0 0 0 0

  b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T O C

  e H e l l o , _ w o r l d 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  (Empty rows g-z ommitted for clarity)

  To explain what you see: The first four rows of the disk are given over for a "Table of contents", or TOC. This TOC stores the location of every file on the filesystem. In the above example, the TOC contains one file, named "hello.txt", and says that the contents of this file are to be found between ae and le. We look at these locations, and see that the file contents are "Hello, world"

  So far so good? Now let's add another file:

  a b c d e f g h i j k l m n o p q r s t u v w x y z

  a T O C h e l l o . t x t a e l e b y e . t x t m e z

  b e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T O C

  e H e l l o , _ w o r l d G o o d b y e , _ w o r l d

  f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  As you can see, the second file has been added immediately after the first one. The idea here is that if all your files are kept together, then accessing them will be quicker and easier: The slowest part of the hard drive is the stylus, the less it has to move, the quicker your read/write times will be.

  The problem this causes can be seen when we decide to edit our first file. Let's say we want to add some exclamation marks so our "Hello" seems more enthusiastic. We now have a problem: There's no room for these exclamation marks on our filesystem: The "bye.txt" file is in the way. We now have only two options, neither is ideal:

  We delete the file from its original position, and tack the new, bigger file on to the end of the second file.

  We fragment the file, so that it exists in two places but there are no empty spaces.

  To illustrate: Here is approach one

  a b c d e f g h i j k l m n o p q r s t u v w x y z

  a T O C h e l l o . t x t a f n f b y e . t x t m e z

  b e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T O C

  e 0 0 0 0 0 0 0 0 0 0 0 0 G o o d b y e , _ w o r l d

  f H e l l o , _ w o r l d ! ! 0 0 0 0 0 0 0 0 0 0 0 0

  And here is approach two:

  a b c d e f g h i j k l m n o p q r s t u v w x y z

  a T O C h e l l o . t x t a e l e a f b f b y e . t x

  b t m e z e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T O C

  e H e l l o , _ w o r l d G o o d b y e , _ w o r l d

  f ! ! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  This is why FAT filesystems need defragging regularly. All files are placed right next to each other, so any time a file is enlarged, it fragments. And if a file is reduced, it leaves a gap. Soon the hard drive becomes a mass of fragments and gaps, and performance starts to suffer.

  And then there is Linux. Which has a different philosophy. Windows filesystems are ideal if you have a single user, accessing files in more-or-less the order they were created in, one after the other. Linux, however, was always intended as a multi-user system: It was gauranteed that you would have more than one user trying to access more than one file at the same time. So a different approach was used. When we create "hello.txt" on a Linux filesystem, it looks like this:

  a b c d e f g h i j k l m n o p q r s t u v w x y z

  a T O C h e l l o . t x t h n s n 0 0 0 0 0 0 0 0 0 0

  b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T O C

  e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  g 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  n 0 0 0 0 0 0 0 H e l l o , _ w o r l d 0 0 0 0 0 0 0

  o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  And then when another file is added:

  a b c d e f g h i j k l m n o p q r s t u v w x y z

  a T O C h e l l o . t x t h n s n b y e . t x t d u q

  b u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T O C

  e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  g 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  n 0 0 0 0 0 0 0 H e l l o , _ w o r l d 0 0 0 0 0 0 0

  o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  u 0 0 0 G o o d b y e , _ w o r l d 0 0 0 0 0 0 0 0 0

  v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  The cleverness of this approach is that the disk's stylus can sit in the middle, and most files, on average, will be fairly nearby: That's how averages work, after all.

  Plus when we add our exclamation marks to this filesystem, observe how much trouble it causes:

  a b c d e f g h i j k l m n o p q r s t u v w x y z

  a T O C h e l l o . t x t h n u n b y e . t x t d u q

  b u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T O C

  e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  g 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  n 0 0 0 0 0 0 0 H e l l o , _ w o r l d ! ! 0 0 0 0 0

  o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  u 0 0 0 G o o d b y e , _ w o r l d 0 0 0 0 0 0 0 0 0

  v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  That's right: Absolutely none.

  Windows tries to put all files as close to the start of the hard drive as it can, thus it constantly fragments files when they grow larger and there's no free space available.

  Linux scatters files all over the disk so there's plenty of free space if the file's size changes. It also re-arranges files on-the-fly, since it has plenty of empty space to shuffle around. Defragging a Windows filesystem is a more intensive process and not really practical to run during normal use.

  Fragmentation thus only becomes an issue on Linux when a disk is so full that there just aren't any gaps a large file can be put into without splitting it up. So long as the disk is less than about 80% full, this is unlikely to happen.

  It is also worth knowing that even when an OS says a drive is completely defragmented, due to the nature of hard drive geometry, fragmentation may still be present: A typical hard drive actually has multiple disks, AKA platters, inside it.

  Let's say that our example hard drive is actually on two platters, with aa to zm being the first and an to zz:

  a b c d e f g h i j k l m n o p q r s t u v w x y z

  a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  g 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  a b c d e f g h i j k l m n o p q r s t u v w x y z

  n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  The following file would be considered non-fragmented, because it goes from row m to row n, but this ignores the fact that the stylus will have to move from the very end of the platter to the very beginning in order to read this file.

  a b c d e f g h i j k l m n o p q r s t u v w x y z

  a T O C h e l l o . t x t r m e n 0 0 0 0 0 0 0 0 0 0

  b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  g 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H e l l o , _ w o

  a b c d e f g h i j k l m n o p q r s t u v w x y z

  n r l d ! ! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  I hope this has helped you to understand why no defragging software came with your Linux installation. If not, I'm always open to suggestions

[Smiley]

  122 comments ? Categories: Omni, FOSS, Technology

  Comments, Pingbacks:

  Comment from:

  giz404 [Visitor]

  · http://giz404.freecontrib.org/

  Your explanation is clear, but I have a one more question : What about NTFS ? Does it handle fragmentation better than FAT ?

  

Permalink
18/08/06 @ 05:44


  Comment from:

  Cameron [Visitor]

  Excellent explaination! I have wondered this for years.

  

Permalink
18/08/06 @ 14:41


  Comment from:

  gab [Visitor]

  So this proves that Linux does need defrag when the hard drive does not have enough gaps... So where are the defrag utils for linux?

  

Permalink
18/08/06 @ 14:49


  Comment from:

  oneandoneis2 [Member]

  Google is a wonderful thing, isn't it?

  

Permalink
18/08/06 @ 15:07


  Comment from:

  RMX [Visitor]

  · http://cbbrowne.com/info/defrag.html

  Another good writeup explaining how fragmentation is actually a good thing in a well designed filesystem can be found here: http://cbbrowne.com/info/defrag.html

  And yes, there are defragmentation utils for some linux filesystems (ext2, for example) and they're useful, for example, when you want to shrink a partition. Totally useless and arguably harmful for performance, though.

  

Permalink
18/08/06 @ 15:17


  Comment from:

  Scott Howard [Visitor]

  · http://www.dipnoi.org

  Very good way of explaining the difference.

  

Permalink
18/08/06 @ 15:22


  Comment from:

  Esben Pedersen [Visitor]

  an inode in an ext2 filesystem refers to a number of pages on the disk. These pages need not to be placed sequentially thoug it is faster.

  So even if the disk usage is larger than 80% and there is not room on the disk for a large file to have all it's pages stored next to each other it will only mean a small performance degradation.

  The small files on the disk will be easy to place with it's pages next to each other.

  

Permalink
18/08/06 @ 15:22


  Comment from:

  Rob [Visitor]

  · http://www.goldcs.co.uk

  Very nice! I've wondered why that was ever since some linux person said "defrag? what!?". Obviously linux users would still need to defrag, but not nearly as much as windows users. One question though - how much does this approach affect performance, seeing as the stylus has to move more?

  

Permalink
18/08/06 @ 15:31


  Comment from:

  your last example seems a little off.. [Visitor]

  since how many files follows that last example?1 in 10000 ? i could be wrong though, i really don't know what i'm talking about.

  

Permalink
18/08/06 @ 15:35


  Comment from:

  Matt [Visitor]

  There is extra cleverness in the Linux filesystems that means the system does not suffer any noticeable effects of fragmentation until it is more than 95% full. Once a disk is this full there's not enough space left in order to be able to defrag it in any meaningful amount of time (try defrag'ing a 95% full FAT disk sometime to get an idea of what I mean)

  A default ext2/ext3 linux filesystem actually reserves (IIRC) 5% of the disk for system use in order to avoid this issue (and for other purposes), so the issue of wanting to actually defrag a disk nearly never occurs in practise.

  There did used to be tools to perform defrag, but no-one ever really used them, and since they could trash the disk on power failure they were considered unsafe.

  

Permalink
18/08/06 @ 15:36

  Comment from:

  joe [Visitor]

 
客戶服務 +more
上門服務
服務承諾
異地恢復
收費標準
付款方式
疑難解答
服務特色 +more
·免費檢測
·免費提供3天備份
·專業工程師提供服務
·免費清潔送修的介質
·數據恢復前報價,客戶確認后工程師開始數據恢復
·數據恢復不成功不收費
·與客戶簽訂保密協議,對客戶的數
 據嚴格保密,整個恢復過程不會對
 客戶的原盤有任何的寫操作,以確
 保原盤的數據完全

·免費參觀恢復全過程

·工程師在線免費咨詢

·專業工程師提供服務
服務器數據恢復 點擊這里給我發消

息
數據庫修復
點擊這里給我發

消息
硬盤數據恢復
點擊這里給我發消

息
主站蜘蛛池模板: 免费一区二区三区在线视频| 亚洲爆乳精品无码一区二区三区| 伦理一区二区三区| 国产亚洲一区二区在线观看 | 精品一区二区三区免费毛片| 国产午夜精品免费一区二区三区| 视频一区视频二区日韩专区| 亚欧免费视频一区二区三区| 无码欧精品亚洲日韩一区| 亚洲高清偷拍一区二区三区 | 国产成人精品a视频一区| 国产精品亚洲一区二区在线观看| 无码人妻一区二区三区在线视频 | 无码少妇一区二区浪潮av| 精品无码人妻一区二区三区18 | 国产精品一区视频| 亚洲高清美女一区二区三区| 久久久久成人精品一区二区| 亚洲啪啪综合AV一区| 亚洲中文字幕无码一区二区三区| 成人无码一区二区三区| 精品一区二区三区无码视频| 日本一区二区在线不卡| 相泽亚洲一区中文字幕| 亚洲无线码一区二区三区| 精品少妇一区二区三区视频| 日韩电影一区二区| 97精品一区二区视频在线观看| 国产免费一区二区三区| 一区二区三区视频| 国产视频一区二区在线观看| 日韩精品一区二区三区中文字幕| 国产精品视频无圣光一区| 免费无码AV一区二区| 亚洲日韩国产精品第一页一区| 精品无码一区二区三区爱欲| 中文字幕乱码一区久久麻豆樱花| 欧美成人aaa片一区国产精品| 日本中文字幕在线视频一区| 丰满人妻一区二区三区免费视频 | 久久一区不卡中文字幕|